Electronics engineering, or electronic engineering, is an electrical engineering discipline which utilizes non-linear and active electrical components (such as semiconductor devices, especially transistors, diodes and integrated circuits) to design electronic circuits, devices, microprocessors, microcontrollers and other systems. The discipline typically also designs passive electrical components, usually based on printed circuit boards.
Electronics is a subfield within the wider electrical engineering academic subject but denotes a broad engineering field that covers subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. Electronics engineering deals with implementation of applications, principles and algorithms developed within many related fields, for example solid-state physics. To a large extent, the modern discipline of electronic engineering was born out of telephone, radio, and television equipment development.
Subfields
Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information.
Telecommunications engineering deals with the transmission of information across a channel such as a co-axial cable, optical fiber or free space. Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation.
Control engineering has a wide range of applications from the flight and propulsion systems of commercial airplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation. Control engineers often utilize feedback when designing control systems.